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The collision of two equi-sized drops immersed in an immiscible liquid phase
undergoing a shear flow in a parallel plate apparatus has been investigated over a range
of capillary numbers. The drops were observed along the vorticity direction of shear
flow by video enhanced contrast optical microscopy. Images of the colliding drops
were processed by image analysis techniques. The distance ∆y between the drop centres
along the velocity gradient direction was measured as a function of time during
approach, collision and separation of the two drops. It was found that ∆y increases
irreversibly after collision, thus providing a mechanism for drop dispersion in a
concentrated system. Drop shape evolution during collision was characterized by
measuring a deformation parameter and the angle made by the drop major axis with
respect to the velocity gradient direction. The extent of the near-contact region when
the drops are sliding on each other was also estimated. Coalescence was a rare event
and was observed in the extensional quadrant of the shear flow. The experimental
results show good agreement with numerical simulations recently reported in the
literature.

1. Introduction

Polymer blending is a popular industrial practice to obtain materials with desired
properties. The microscopic morphology of a polymer blend, which develops during
processing and eventually becomes frozen in the final product, plays a fundamental
role in determining material properties of industrial interest, such as mechanical
strength and permeability. It is well known that morphology development under flow
is mainly affected by two key phenomena, i.e. break-up and coalescence of the drops
forming the dispersed phase.

While break-up involves a single drop and is not very influenced by the presence of
neighbouring drops in a blend (Loewenberg & Hinch 1996b), coalescence is, by
definition, the result of a many-particle interaction process. The first step of such a
process is the approach and collision of two or more drops during flow. Subsequent
stages are flattening of the surfaces of the colliding drops in the near-contact region,
drainage of the intervening film of continuous phase and film rupture, leading to
confluence. It is also well known that collisions do not always result in coalescence and
that drop deformation tends to decrease the probability of coalescence (Chesters 1991).

Few experimental works have been aimed at a direct visualization of collision and
coalescence of drops during flow. Mason and co-workers (Bartok & Mason 1959;
Allan & Mason 1962; MacKay & Mason 1964) studied collisions of two or more drops
under simple shear flow in a Couette apparatus, as an extension of earlier work on
hydrodynamic interactions between rigid spheres and rods (Bartok & Mason 1957).
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These authors investigated also the effect of electric fields (Allan & Mason 1962) and
the effect of diffusion of a component soluble in both phases (MacKay & Mason 1964)
on coalescence under shear flow. Their work was mainly restricted to the case of quasi-
spherical drops. By tracking the relative motion of two colliding drops, it was found
that the distance between the centres of mass along the velocity gradient did not
restore, after separation, to the value before collision, but became larger. The effect was
predicted in a qualitative way by a model based on an expression for the force acting
on the drops in the near-contact region derived from Jefferey’s generalized theory for
sheared rigid ellipsoids (Allan & Mason 1962). It was also suggested that the
asymmetrical nature of drop collision provides a mechanism for diffusion of drops
along the velocity gradient direction, i.e. across streamlines. Shear-induced self-
diffusion of spherical particles has been observed experimentally only for rigid particles
(Eckstein, Bailey & Shapiro 1977; Leighton & Acrivos 1987). The effect has been
attributed to multi-body interactions, since binary collisions between spherical rigid
particles do not produce a net cross-flow displacement. No experimental data are
available in the literature on self-diffusion of drops in shear flow.

Recently, Loewenberg & Hinch (1996a, b) presented numerical simulations of
sheared emulsions based on a boundary integral formulation to describe pairwise
interactions between deformable drops. The efficient calculation procedure developed
by these authors allowed them to circumvent the computational limitations of previous
applications of the boundary integral method and to perform extensive simulations of
concentrated emulsions on an ordinary workstation.

The calculation procedure was also applied to simulate the interaction of two
colliding drops in an infinite medium under shear. Numerical simulations of binary
collisions were performed over a range of values of the two fundamental parameters
governing the motion of a drop in a sheared fluid: the viscosity ratio λ¯µ

d
}µ

c
, where

µ
c
and µ

d
are the viscosities of the continuous phase and of the drop, respectively, and

the capillary number Ca¯γd Rµ
c
}σ, where γd is the shear rate, R is the undeformed drop

radius and σ is the interfacial tension. Results were obtained for the evolution of the
following quantities during collision: the distance between the centres of mass along
the velocity gradient, the deformation parameter D, defined as (L®B)}(LB), where
L and B are, respectively, the major and minor axis of the deformed drop, the stress
contribution of each drop to shear stress, and the first and second normal stress
difference.

Such calculations provide a complete three-dimensional picture of drop collision
under shear flow, both in terms of relative motion and of drop shape evolution. In
particular, it was found that drop collision leads to drop dispersion along the velocity
gradient, in agreement with Mason and the coworkers’ experimental observations.
Furthermore, it was shown that the deformation and shear stress contribution of the
drops were maximal when the drops are pressed together in the compressional
quadrant of the shear flow and minimal when they are drawn apart in the extensional
quadrant. Drop coalescence was not observed in the simulations since modelling of
interfacial phenomena, such as van der Waals attraction, was not included in the study.
However, by using scaling arguments, it was predicted that for Ca' 1 or λ1O(1) the
tendency for coalescence is greatest when drops are pressed together by the shear flow.
On the other hand, for viscosity ratios and Ca both of order one, the tendency for
coalescence was predicted to be greatest when the drops are drawn apart in the
extensional quadrant of shear flow (Loewenberg & Hinch 1996b).

Experimental results for a suitable comparison with Loewenberg & Hinch computer
simulations appear to be lacking, especially for the case of drops significantly deformed
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by shear flow. In this article, we present a set of experimental data describing binary
collisions of drops under simple shear flow in a parallel plate apparatus. Drop
interaction was followed by direct visualization through video optical microscopy and
studied in a quantitative way by image analysis techniques. Experimental conditions
included neutrally buoyant and equi-sized drops, and Newtonian behaviour of both
continuous and dispersed phase in the range of shear rates investigated. Experiments
were performed at two viscosity ratios and at several values of Ca. The tendency of the
drops to coalesce is a related issue for which only preliminary results will be presented.
The experimental procedure is described in §2, results are presented in §3, and
concluding remarks are given in §4.

2. Experimental

2.1. Materials and shear apparatus

The fluids used in this work are polyisobutylene (PIB) and polydimethylsiloxane
(PDMS). In order to vary the viscosity ratio between drop and continuous phase, two
PDMS samples of different molecular weight, which will be denoted as PDMS 100 and
PDMS 200, were selected for the experiments. All the experiments were performed at
ambient temperature (C 25 °C). Both polymers are transparent and the difference
between their refractive indices is high enough to have good optical contrast for
observations.

The two polymers can be considered immiscible for practical purposes. However,
careful observations revealed that drops of PIB (in the µm size) immersed in PDMS
(either 100 or 200) experienced a slow decrease in diameter with time. On the contrary,
no significant variation of size was observed for drops of either PDMS in PIB, even
after a few days. These results were attributed to a small solubility of PIB in PDMS.
Owing to the polydispersity of the PIB sample used in this work, it is expected that the
diffusion of PIB from the drop in the PDMS continuous phase is selective, i.e. the lower
molecular weight chains will diffuse out first. As a consequence, the viscosity ratio will
increase with time, though slowly. Therefore, for higher precision, experiments to be
analysed in a quantitative way were carried out by using PIB as the continuous phase
and PDMS, either 100 or 200, as the drop phase. A few observations, for qualitative
purposes, were also performed by inverting the phases, i.e. using PIB as the drop fluid.

Buoyancy effects are expected to be negligible owing to the small density difference
(0.08 g cm−$) and the high viscosity of the two polymers (the Newtonian plateau
viscosities are 81 Pa.s for PIB, 109 Pa.s for PDMS 100 and 190 Pa.s for PDMS 200 at
25 °C). A quantitative criterion to evaluate buoyancy effects can be obtained by
comparing the buoyancy-driven velocity ∆ρgR#}µ

c
and the shear velocity γd R. In the

experiments performed in this work the ratio between the two velocities is of the order
of 10−$, thus showing that buoyancy is indeed negligible.

For values of the shear rate γd below 1 s−" the rheological behaviour of both PIB and
PDMS can be considered as Newtonian to a good approximation, as indicated by (i)
the constancy of viscosity with shear rate, and (ii) the negligible values of first normal
stress difference and dynamical modulus G«. In all the experiments described in this
work, the shear rate γd was set at about 0.1 s−" or below, i.e. well within the Newtonian
plateau of both polymers. However, when two sheared drops come into apparent
contact, one could conceive that higher local values of shear rate can be attained in the
intervening film of continuous phase. As a consequence, the fluid in the near contact
region might display a viscoelastic behaviour. An estimate of the shear rate in the near
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F 1. Schematic of parallel plates assembly.

contact region can be made by using the scaling arguments proposed by Loewenberg
& Hinch (1996b). The local velocity in the near contact region can be written as u¯
u
p
u

t
, where u

t
is the tangential velocity on the drop interfaces and u

p
is the velocity

of pressure-driven flow. From scaling arguments, the rate of strain estimated from
either velocity component is u

p
}h¯ u

t
}cEd R#h}c$ (Loewenberg, private communi-

cation), where c is the radius of the near contact region and h is the thickness of the film
between the two drops. For Ca¯O(1), cER and the highest rate of strain in the gap
is u

t
}c¯γd R}h'γd . It can be concluded that non-Newtonian effects are not expected

to affect the results of this work.
The interfacial tension for the PIB}PDMS system used in this work has been

measured by Sigillo et al. (1997) through analysis of steady state drop deformation,
drop retraction and thread break-up. By comparing the results obtained by these
techniques, an average value of 3.0³0.5 mN m−" was obtained.

Simple shear flow was generated by a parallel plate apparatus. Both plates
(100 mm¬10 mm¬10 mm) were made of glass and each one, as shown in figure 1, was
glued on a glass slide (100 mm¬50 mm¬3 mm), which was, in turn, fit in a window
cut on a rigid mount. One of the two mounts was screwed on an x, y-motorized stage
equipped with two computer-controlled stepper motors (LEP Ltd), thus allowing the
corresponding glass plate to be displaced with respect to the other along two
perpendicular directions. Minimum and maximum motor speeds were 0.0084 mm s−"

and 30 mm s−", respectively. The maximum travel was 100 mm, with a positioning
accuracy of 5 µm. The x- and y-directions of the motorized stage were used,
respectively, to shear the sample and to set the gap between the glass plates.
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Adjustment of a micrometric tilting stage, as checked by a stage micrometer,
guaranteed that the inner surface of the moving plate was being displaced in its own
plane. Parallelism between the glass plates was adjusted through a set of translating,
rotary and tilting stages by exploiting the reflections of a laser beam from the glass
surfaces. The parallelism accuracy was of the order of 20 µm over the whole plate
length of 100 mm. Typical gap values were between 0.7 and 0.8 mm, in order to
minimize edge effects due to the confining surfaces of the two glass slides. To test
apparatus performance, the velocity as a function of the distance from the fixed plate
along the y-direction was measured by tracking the motion of small impurities or dust
particles inside the sample. The velocity profiles obtained were linear, as expected for
simple shear flow.

One of the main features of the experimental set-up was that the sheared sample
could be observed by looking through the glass slides, i.e. along the vorticity axis of the
shear flow. Observations were performed through a transmitted light microscope
(Axioscop FS from Zeiss) equipped with a B}W CCD video camera (Hitachi KP-ME1)
and a motorized focus system (LEP Ltd). The microscope itself was mounted on a
motorized translating stage (Contek) in order to keep the sheared drops within the field
of view during motion. The whole apparatus was placed on a vibration-isolated
workstation (Newport).

The optics selected for the experiments included the following components (all from
Zeiss) : long working distance objectives (a 2.5¬}0.075 Plan-Neofluar, a 10¬}0.25
Achrostigmat, and a 20¬}0.40 Achroplan), to allow focusing through the whole
sample thickness ; a brightfield condenser 0.9 Z; an additional lens holder (Optovar
slider) which enabled the total magnification to be varied with factors of 1.25¬ and
1.6¬ ; and a zoom lens with a continuously adjustable zoom factor in the range
0.5–2.0¬.

2.2. Drop formation

The polymer selected as the continuous phase was loaded between the glass plates with
the following procedure. Once alignment of the glass surfaces was completed, the
moving plate was driven apart from the fixed one along the y-direction of the
motorized stage. The polymer was then loaded between the two plates by a syringe.
The moving plate was again brought towards the fixed plate along the y-axis until the
desired gap was reached. The parallelism was rechecked by using the microscope to
measure the gap thickness at several positions, to see if some misalignment was
introduced by squeezing a viscous fluid between the two plates. It was also verified
optically that the moving plate was still translating in its own plane. The small
deviations found, if any, were then corrected by using the micrometric stages.

At this point, drops of the polymer selected as the dispersed phase were injected in
the sample by a tiny glass capillary (o.d. was around 0.3 mm, with an inside diameter
of about 0.1 mm). The glass capillary was introduced in the gap by a home-made
micromanipulator. Care was taken to generate isolated drops at about half-way
distance between the two glass slides along the y-direction in order to avoid edge
effects. After injection of a few isolated drops in the sample, the capillary was gently
extracted from the gap.

The next step was to generate two drops of about equal size to be used for a collision.
This was achieved by breaking an isolated drop in two daughter drops. The sample was
sheared at a capillary number above the critical value for drop break-up. To avoid
formation of multiple satellites, the drop was not allowed to break up under shear, but
the flow was stopped before growth of Rayleigh instabilities at the interface. If the drop
was extended enough by the action of shear, it broke up during relaxation. The process
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F 2. Break-up of a sheared drop after stopping the flow. (a) Drop at rest ; (b) drop extended by
shear ; (c) and (d ) drop retraction after stopping the flow; (e) the two drops generated by break-up.

could be controlled by further shearing the relaxing drop, either in the same sense or
in the opposite sense with respect to the previously applied flow, as needed to prevent
formation of multiple satellites. In such a way, it was possible to generate two daughter
drops of about the same radius (ranging from 20 µm to 80 µm), with, at most, one tiny
satellite in between them. The difference between the radii of the two drops was a few
per cent of the average value.

Drop size was small enough to minimize wall effects. It is known from theoretical
studies and numerical simulations that, for an isolated drop, the effect of a wall is to
generate a migration away from the wall, a slip velocity parallel to the wall, and an
increase of drop deformation (Chan & Leal 1979; Kennedy, Pozrikidis & Skalak 1994;
Uijttewaal & Nijhof 1995). Such effects are a decreasing function of the ratio H}R,
where H is the distance of the drop from the closer wall. The effects become negligible
for H}R around 5, a condition which is fulfilled in the experiments presented in this
work.

An aspect of the break-up process which was essential for this study was that, as a
result, there was always a small, yet non-zero distance between the centres of the two
daughter drops along the velocity gradient direction. This can be explained in the
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(a) (b)

(c) (d)

25 lm

F 3. (a) Digital image of two drops during approach; (b) same image as in (a), drop contours
as identified by image analysis are shown in white ; (c) image of two colliding drops in close contact ;
(d ) same image as in (c), the contours of the two drops have been separated and are drawn as white
lines. Ca¯ 0.13, λ¯ 1.4, R¯ 17 µm.

following way. It is well known that the long axis of a drop under shear flow makes
a certain angle (between 45° and 90°) with respect to the velocity gradient direction
(Taylor 1934). Therefore, once the flow is stopped, the extended drop starts relaxing
by forming two bulbous ends that are separated by a certain distance along the velocity
gradient direction. Even though such distance is decreased by retraction, a small
separation, of the order of a few tenths of the daughter drops radius, is still retained
after break-up. The whole process is illustrated by the sequence of images presented in
figure 2.

After break-up of the original drop, a shear flow was applied (keeping Ca below the
critical value) in such a way as to further separate the two generated drops along the
flow direction. Once the desired distance along the flow direction was reached, the
shear was stopped and the drops were allowed to relax back to the spherical shape. The
flow direction was then reversed and images of the drops during approach, collision
and separation were recorded on video tape for later analysis, as will be described in
the next subsection.

2.3. Image analysis and data reduction

A preliminary step for image analysis was to digitize a certain number of images of the
colliding drops from the sequence recorded on video tape. Digitization was performed
by means of a frame grabber (DT2867-LC, Data Translation), installed on a Pentium-
based personal computer. The frame grabber was operated through image processing
and analysis software (Global Lab Image, Data Translation). Image contrast was
enhanced prior to digitization by adjusting gain and offset of the incoming video signal,
which was then converted into an array of integers, ranging from 0 to 255, displayed
on a monitor as grey levels. Digitization of images at consecutive times was performed
in an automated way by running an especially-developed C-language macro which
controlled frame grabber operation and stored images on hard disk in a compressed
format. The time interval between successive images, which was given as input to the
C macro, was set to either 2 or 3 s. A typical digital image of two drops during
approach is presented in figure 3(a) (Ca¯ 0.13, λ¯ 1.4).
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Once a sequence of images was stored on hard disk, images analysis was performed
by a second C macro calling some standard routines from the image analysis software
library. Each image of the sequence was first averaged to reduce noise, then a grey level
threshold was imposed to binarize the image while preserving continuity of drop
contours. As an example, the contours of the drops of figure 3(a) are shown in figure
3(b). When the drops came into apparent contact, as exemplified in figure 3(c), their
images looked merged together in the region of close approach and it was not possible
to separate the two contours by a simple thresholding method. Instead, an algorithm
based on boundary analysis was applied to the contour of the apparently merged
drops. The two cusps corresponding to the extremes of the region of apparent contact
were identified by analysing boundary curvature. As shown in figure 3(d ), a white
segment was drawn on the image between the two points, thus allowing separation of
the two drops by the thresholding method described above.

The two drops were identified as objects in the binary image and the first and second
moments of area along x and y were measured. A bilinear transformation (Gonzales
& Woods 1992) was used to correct the moments of area for distortions introduced by
the video camera. The coefficients of the transformation were preliminarily determined
by using calibration graticules (Graticules Ltd). The two drop axes in the (x, y)-plane
and the angle θ between the major drop axis and the y-direction were calculated from
the corrected moments of area on the assumption of elliptical shape for the drop
projection in the x, y-plane.

3. Results and discussion

This section is organized as follows. The application of the above described
methodology to a typical collision experiment is presented in Section 3.1. The effect of
Ca, λ and the initial separation between the two drops is described in Section 3.2. A
comparison between experimental results and numerical simulations and theories from
literature is made in Section 3.3.

3.1. Standard collision experiment

The reference system which will be adopted to describe the results is shown in figure
4. The coordinate frame is centred on the slower drop (i.e. the one closer to the fixed
plate), which will be denoted as drop 1. The coordinate axes are oriented as follows:
the x-axis is parallel to flow direction, the y-axis is parallel to the velocity gradient and
points to the moving plate, and the z-axis is parallel to the vorticity direction. The
relative trajectory of the two drops will be expressed in terms of the differences ∆y¯
y
#
®y

"
and ∆x¯x

#
®x

"
, where x

i
and y

i
are the centre-of-mass coordinates of the ith

drop. It can be noticed that, with our choice of the reference system, the initial values
of ∆x and ∆y are always negative and positive, respectively. The difference ∆z between
the z-coordinates of the two drops is close to zero, as a result of the drop formation
technique described in the experimental section (∆z would be exactly zero in absence
of any experimental imperfection, such as some residual misalignment). Since the drops
are of slightly different size and almost neutrally buoyant, no significant increase of ∆z
owing to different settling velocities is expected in the time course of an experiment,
which is of a few minutes.

In all the subsequent plots, ∆x and ∆y will be made dimensionless by using the
average radius R of the undeformed drops as the characteristic length. In the collision
experiment presented in this subsection, Ca was equal to 0.13 and λ was equal to 1.4
(PDMS was the inner phase). The difference between the radii of the two drops at rest



Binary collision of drops in simple shear flow 9

Dy

Drop 1

Centre of mass

Dx

Drop 2
x

y

F 4. Frame of reference used to represent collision data.

(a) (b)

(c) (d)

25 lm

(e) ( f )

F 5. Sequence of images recorded in the course of a typical collision.
Ca¯ 0.13, λ¯ 1.4, R¯ 20 µm.

was less than 1% of the average value, which was 20 µm. The gap size was about
675 µm and the shear rate was set at 0.21 s−". The drop Reynolds number was of the
order of 10−(, thus showing that inertial effects are negligible.

A sequence of six images of the colliding drops at successive times is shown in figure
5. In figure 6, ∆y is plotted as a function of ∆x during approach, collision and
separation between the two drops. The data points corresponding to the images of
figure 5 are indicated by arrows. It can be seen that ∆y starts increasing after the drops
come into apparent contact (∆xC®2R), goes through a maximum, and, after
separation, reaches a new steady-state value. The trend was quite reproducible when
the initial values of ∆x and ∆y were close to those of figure 6. However, for higher
values of ∆x, as will be discussed in the next section, ∆y passed through a minimum
when the two drops were approaching each other, the other qualitative features of the
plot remaining the same.
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F 6. Plot of ∆y}R �s. ∆x}R,
same experiment as in figure 5.
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F 7. Plot of the deformation parameter D as a function of ∆x}R,
same experiment as in figure 5.

One of the most interesting aspects of figure 6 is that the final value of ∆y, which is
1.35, is greater than the value before collision, which is 0.43. In fact, it was observed
that, if the drops were made to collide again by reversing the flow direction, ∆y
increased further. In other words, the effect was irreversible, and repeated collisions led
to increasing values of ∆y until drop interaction became negligible. This result extends
the work by Mason’s group (Bartok & Mason 1959; Allan & Mason 1962), which was
restricted to quasi-spherical drops, and is in agreement with the numerical simulations
of Loewenberg & Hinch (1996a, b), who investigated also the case of significantly
deformed drops.

In figure 7 the deformation parameters D
"
and D

#
of the two drops are plotted as a

function of ∆x. In the following, the deformation parameter of either drop will be
designated as D, since the two sets of data appear to coincide within the experimental
error (including the small difference in size between the drops). D slightly decreases
during approach, then goes through a maximum (point (c)), a minimum (point (e )), a
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F 8. Plot of the angle λ between the line joining drop centres and x-axis �s. ∆x}R,
same experiment as in figure 5.

second maximum, and eventually reaches a steady state at the same constant value as
before the collision. It should be pointed out that such a steady-state value of D,
corresponding to isolated drop behaviour, is attained shortly after start-up of the
experiment. It follows that the drops reach a stationary shape long before they interact,
thus ensuring that the collision is not affected by transient effects during start-up.

The trend displayed by the deformation parameter can be explained in a qualitative
way by regarding the two drops, while they are in close contact, as forming a single
object, or, more precisely, a ‘collision doublet ’, following Allan & Mason (1962). The
orientation of the doublet can be expressed by introducing the angle φ that the line
joining the centres of mass of the two drops makes with respect to y-axis. The plot of
φ as a function of ∆x is presented in figure 8. The limiting values of φ are ®90° for
∆xU®¢ and 90° for ∆xU¢, the trend of φ being sigmoidal in between.

The force exerted by the surrounding fluid on the doublet will act to push the two
drops together in the compressional quadrant of shear flow (where φ! 0). It follows
that the deformation parameter of each drop increases in the compressional quadrant
and this trend is shown by both the sequence in figure 4 (images (b) and (c)) and the
plots of figure 7 (up to the first maximum, point (c)). When the doublet reaches the
extensional quadrant, the deformation parameter starts decreasing and reaches a
minimum (point (d ) in figure 7 and corresponding image in figure 4). The minimum
value of D is lower than the steady-state value before (or after) collision. Such a
decrease of D can be explained as the result of two processes : (i) relaxation of drop
shape once the doublet leaves the compressional quadrant, and (ii) action of the
surrounding fluid on the drops. In the latter process, the surrounding fluid exerts an
extensional force on the doublet, which is now oriented along an angle φ lower than
the angle θ of either drop (the plot of θ �s. ∆x will be presented in the following
paragraph). It follows that the force experienced by each drop acts to decrease the
deformation. Upon increase of φ in the course of collision, the orientation of the
doublet gets closer to the orientation of either drop. The extensional action of the
surrounding fluid leads now to an increase of D up to a maximum when the drops
separate. The two drops then relax to the steady state shape in the absence of
interaction.
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F 9. Plot of the angle θ between drop major axis and velocity gradient direction �s.
∆x}R, same experiment as in figure 5.
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F 10. Plot of the relative velocity ∆V
x

between the drops in the x-direction �s. ∆x}R,
same experiment as in figure 5. The continuous line has been calculated as γd ∆y.

A similar oscillatory trend is displayed by the angle θ that either drop makes with
respect to the y-axis, as shown in figure 9. The main differences are that (i) θ goes first
through a pronounced minimum (shown by arrow 2 in figure 9) at ∆xC®1.6, whereas
D only slightly decreases in this interval of ∆x, and (ii) the two maxima of θ lag behind
those of D. The decrease of θ pointed out in (i) starts when the two drops come into
contact and are pushed against each other in the compressional quadrant of shear flow.
At some point, while the drops are sliding over each other, the trend is reversed and
the drops become more oriented along the flow direction, as shown by images 3 and
4 of figure 5. A similar qualitative description can be applied to the behaviour of θ in
the extensional quadrant of shear flow.

In figure 10 the relative velocity between the centres of mass along the flow direction,
indicated as ∆�

x
, is plotted as a function of ∆x. ∆�

x
has been calculated as d(∆x)}dt
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F 11. Plot of the relative velocity ∆V
y

between the drops in the y-direction �s. ∆x}R,
same experiment as in figure 5.

from the experimental data and then plotted �s. ∆x for comparison with the previous
diagrams. It can be seen that ∆�

x
increases rapidly when the drops start interacting,

thus showing that drops accelerate while sliding over each other. The final steady-state
value of ∆�

x
is, of course, higher than the initial one, owing to the increased distance

between the two drops along the y-axis. The continuous curve in figure 10 has been
calculated as γd ∆y, with γd ¯ 0.21 s−" and ∆y being the experimental value
corresponding to each ∆x. Therefore, the continuous curve represents the relative
velocity between the centres of mass if the drops moved relative to the continuous
phase. Before and after collision, the dashed curve actually coincides with the
experimental data, whereas one drop retards the other during interaction.

The relative velocity along the velocity gradient ∆�
y

is plotted as a function of ∆x
in figure 11. The value of ∆�

y
before and after collision is zero, as expected. ∆�

y
is

positive when the drops are sliding over each other and the distance between the centres
of mass along y increases, and becomes negative when the drops are separating and the
increase in ∆y is partly recovered.

3.2. Effect of Ca and λ

As mentioned in the previous section, in some experimental conditions ∆y went
through a minimum before the drops came into apparent contact. An example of a plot
of ∆y �s. ∆x with such a minimum will be presented in the following (figure 13). The
presence of a minimum indicates that the drops move towards each other along the
velocity gradient direction. To exclude experimental artifacts, the trend of the y-
coordinate of each drop during approach was examined. It was verified that y

"
and y

#
are, respectively, a decreasing and an increasing function of ∆x, thus showing that the
drops actually move towards each other during approach. The minimum was observed
only when the initial separation between the drops along the x-axis was greater than
about 6 times the undeformed radius. The value of ∆x corresponding to the minimum
was around ®3. The depth of the minimum was dependent on the capillary number:
the higher the value of Ca, the deeper the minimum. In some cases, the value of ∆y
went so close to 0 that the drops did not collide in the course of the experiment, even
at the highest total strain allowed by the apparatus.
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(e) ( f )

100 lm

F 12. Sequence of images showing a collision with coalescence. Ca¯ 0.13, λ¯ 0.36.

Apart from the influence on the minimum of ∆y, the effect of Ca in the range
investigated (0.07–0.36) can be described as follows. Both the maximum value of ∆y
and the corresponding value of ∆x showed a slight increase for decreasing values of Ca.
A possible explanation of such a trend is that with decreasing Ca the drops are less
deformed and so act as bigger obstacles for each other. The final steady-state value of
∆y varied from 1.2 to 1.3 and no significant trend could be inferred from the data
beyond the scatter due to experimental error. The behaviour of D and θ was also
qualitatively similar in the range of Ca investigated.

The effect of λ was evaluated by changing the PDMS sample used as the drop fluid.
The viscosity ratio was 1.4 for PDMS 100 and 2.0 for PDMS 200. The trend of ∆y, D
and θ was qualitatively similar in the two cases. The final value of ∆y after collision did
not exhibit a significant variation, either.

Coalescence was not observed in any of the experiments described so far. As
mentioned in §2.1, some experiments were also carried out by using PIB as the fluid
phase. The results can be taken as only qualitative, since the actual value of the
viscosity ratio at the time of collision is different from the initial one owing to diffusion
of PIB in PDMS. In such experiments, coalescence, though a rare event, was observed
in a few cases and it took place in the extensional quadrant of shear flow, when the
drops were about to separate.

An example is shown in the sequence of images presented in figure 12. The drop
formed from coalescence was broken again and a new collision experiment was
performed, at the same Ca (0.13). In such a case, however, drop interaction did not lead
to coalescence. In figure 13, ∆y is plotted �s. ∆x for the two successive experiments just
described. Apart from the different paths followed during the approach, owing to the
different initial separations between the drops in the two experiments, the plots of
figure 13 coincide until coalescence. It follows that the different behaviour observed in
the two experiments cannot be attributed to a difference in drop kinematics. A possible
explanation is the progressive accumulation of impurities at the interface in the course
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F 13. Plot of ∆y}R �s. ∆x}R for Ca¯ 0.13, λ¯ 0.36. The circles (D) correspond to the collision
with coalescence of figure 12. The squares (+) correspond to a collision between two drops generated
by break-up of the drop formed upon the coalescence shown in figure 12.

of the experiments, leading eventually to inhibition of coalescence. Such interpretation
has already been proposed to explain the lack of reproducibility in coalescence
experiments where a drop was made to contact a flat liquid interface by gravity
(Charles & Mason 1960). Another explanation is a possible effect of the diffusion of
PIB from the drops in the continuous phase. However, according to the results of
MacKay & Mason (1964), the diffusion of a component out of the drops inhibits
coalescence.

3.3. Comparison with theories and numerical simulations in literature

As mentioned in §1, Allan & Mason (1962) developed a simplified model for the
collision of two equi-sized drops in simple shear flow. The model is restricted to the
case of quasi-spherical drops, i.e. only slightly deformed by shear flow. Van der Waals
force of attraction was not taken into account by Allan & Mason, but it was included
in the extension of the model developed by Jeelani & Hartland (1993). The two drops
in near contact were described as a collision doublet of ellipsoidal shape, on which the
suspending fluid generates a force along the major axis given by Jeffery’s generalized
theory for rigid ellipsoids. The axis ratio r

e
of the doublet was assumed equal to 2 and

doublet orientation was described by the angle φ. The compressional force at φ! 0
acts to push the two drops together and to flatten them in the apparent contact region.
By assuming instantaneous response to the compressional force, the following
expressions were obtained for the radius c of the apparent contact region

c

R
¯ (2.17Ca sin (®2φ))"/# for φ! 0, (1)

c¯ 0 for φ" 0. (2)

Based on such expressions for c, an equation was then derived for the velocity of
approach of the two drops, which was integrated to calculate ∆y as a function of ∆x.
The model predicts that the steady-state value of ∆y after collision is greater than the
initial one.
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F 15. Plot of the axis ratio of the doublet r
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To evaluate whether the Allan & Mason model can be used to describe the collision
data presented in this work, the images of the drops in close contact, i.e. when they can
be described as a collision doublet, were analysed without using an algorithm to
separate the two drops. The moments of area of the doublet were measured and the
axis ratio r

e
and the angle θ

e
of the equivalent ellipse were calculated, as described in

§2.3. Typical plots of θ
e
�s. time and of r

e
�s. time are presented in figures 14 and 15,

respectively. In figure 14, the plot of φ (defined, as in §3.2, as the angle between the line
joining the centres of mass of the two drops and the y-axis) �s. time is also shown as
a continuous line. The good agreement between φ and θ

e
shows that both the methods

of calculating the doublet angle lead essentially to the same results. The plot of figure
15 shows that r

e
assumes values between 1.4 and 3.3, with an average of 2.0, which is

the value considered by Allan & Mason for quasi-spherical drops.
So far, the model by Allan & Mason gives a reasonable description of drop collision

even for significantly deformed drops. To test model predictions, the extent c of the
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squares are experimental data; the continuous line corresponds to the Allan & Mason model
(1962).
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F 17. Comparison between experiments and numerical simulations by Cristini et al.
(unpublished work). The open squares are experimental data of ∆y}R �s. ∆x}R, the continuous line
is the numerical simulation. Ca¯ 0.135, λ¯ 1.37.

apparent contact region was estimated from the images of the colliding drops. As
described in §2.3, the extremes of the near contact region were taken as the two cusps
on the contour of the apparently merged drops. A plot of the estimated c value as a
function of φ is presented in figure 16 for a collision at Ca¯ 0.13 and λ¯ 1.4. The
continuous line in figure 16 represents equation (1). The main difference between the
theoretical curve and the data is that the near contact region experimentally observed
does not reduce to a point at φ¯ 0, as assumed by the Allan & Mason model. Such
a difference does not depend on the way c was estimated in this work, being
immediately evident from the unprocessed images. The discrepancy was pointed out by
Allan & Mason for the case of quasi-spherical drops and was attributed to a relaxation
effect not taken into account by the model, which is based on instantaneous response
to the force exerted on the doublet by the suspending fluid. No further attempt of
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drops, the continuous line is the numerical simulation (Cristini et al. unpublished work). Same
conditions as in figure 17.

comparison with the Allan & Mason model was made, since the fundamental equation
derived for the velocity of approach of the two drops involves a quantity, i.e. the
distance between the drop surfaces, which was not resolvable in the near-contact region
by the optics used in this work.

Numerical simulations of collisions between two drops in shear flow have been
recently reported by Loewenberg & Hinch (1996a, b), as mentioned in §1. All the
qualitative features of binary collisions observed in this work are in agreement with the
numerical simulations. In particular, the minimum in the plot of ∆y �s. ∆x is also
present in the results presented by Loewenberg & Hinch (1996) and gets more
pronounced with increasing Ca. A quantitative comparison between experimental
results obtained in this work and calculations kindly performed ad hoc by Loewenberg
and co-workers (V. Cristini, J. Blawzdziewicz & M. Loewenberg, unpublished work) is
presented in figures 17 and 18.

In figure 17, ∆y is plotted as a function of ∆x for Ca¯ 0.135 and λ¯ 1.37. The
continuous lines represent numerical simulations, while the open squares correspond
to the experimental data. The numerical simulations were performed using the same
initial values of ∆x and ∆y as in the experimental data presented in figure 17, ∆z was
set to 0. The comparison shows a good agreement between experiments and numerical
simulations. Van der Waals attraction was not taken into account in the numerical
simulations. In fact, it is unlikely that van der Waals forces are strong enough to bias
drop trajectories without leading to coalescence.

Numerical and experimental data of D �s. ∆x are compared in figure 18, for the same
two experiments presented in figure 17. The agreement is again quite good, both from
the qualitative and quantitative point of view. Numerical and experimental results
show the same qualitative features, and the only significant quantitative difference is in
the value of the first maximum of D, which is higher in the numerical simulations. The
discrepancy can be attributed to approximations in the determinations of D in the near
contact region, both in the numerical simulations and in the experimental data. The
latter correspond to an ellipse equivalent in area to the actual drop, whereas in the
near-contact region some deviations from elliptical shape are expected (though
modest), given the flattening at the interface. As pointed out by Loewenberg & Hinch
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(1996a), numerical simulations, on the other hand, tend to over-predict drop
deformation due to surface discretization. The two sources of error go in opposite
directions, since the experimental error acts to underestimate the deformation
parameter, while the numerical approximations act to overestimate it.

4. Concluding remarks

In this work, a methodology to study collisions between two drops in shear flow has
been developed. The colliding drops have been observed along the vorticity direction of
shear flow by video-enhanced contrast optical microscopy. Image analysis techniques
have been applied to measure the relative trajectory of the drops and to characterize
the deformation experienced by each drop in the course of collision. One of the features
observed studying relative trajectories is that collision always acts to separate further
the two drops along the velocity gradient direction. In a concentrated system (e.g. a
polymer blend or an emulsion), such an effect leads to a shear-induced self-diffusion of
drops, which has been studied by Loewenberg & Hinch (1996b) through numerical
simulations. On the assumption that the system is so dilute that only pairwise
interactions need to be considered, these authors found that self-diffusion is
anisotropic, being much larger in the velocity gradient direction than in the vorticity
direction. An experimental estimate of the corresponding two self-diffusion coefficients
cannot be made by using the results of this work, since the dependence of trajectory
displacement of ∆z has not been investigated. Work on this aspect is in progress.

Coalescence has been observed when the drops were about to separate, in agreement
with the predictions of Loewenberg & Hinch (1996b), based on scaling arguments. The
lack of reproducibility which was observed in two subsequent collisions was attributed
to accumulation of impurities at the interface. It should be pointed out that this is only
a tentative explanation based on similar results reported in the literature, since a full
understanding of the coalescence process has not yet been reached. A quantitative
comparison with coalescence models presented in the literature (Chester 1991) was not
possible, since it requires data for the thickness of the film between the drops. Such
data could not be obtained in this work, as the distance between the surfaces of
colliding drops in the near contact region was not resolvable with the optics used.

Good agreement was found between experimental data obtained in this work and
numerical simulations in the literature (Loewenberg & Hinch, 1996a, b ; Cristini et al.
unpublished work). The minimum observed in the plot of ∆y �s. ∆x is also present in
the simulations. Furthermore, the dependence of the minimum on Ca and on the initial
value of ∆x is correctly predicted. This work has been restricted to values of ∆z close
to 0. A knowledge of the dependence of trajectory displacement on ∆z would allow a
more accurate comparison with numerical simulations. Work is in progress in this area.
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